S-shaped bifurcations in a two-dimensional Hamiltonian system

نویسندگان

چکیده

We study the solutions to following Dirichlet boundary problem: d 2x(t) dt2 + λ f(x(t)) = 0, where x ∈ R, t R+, with conditions: x(0) x(1) A R. Especially we focus on varying parameters and in case phase plane representation of equation contains a saddle loop filled period annulus surrounding center. introduce concept mixed which take values above below A, generalizing well-studied positive solutions. This leads generalization so-called function for annulus. derive expansions these functions formulas derivatives generalized functions. The main result is that under generic conditions f(x) S-shaped bifurcations occur. As consequence there exists an open interval sufficiently small can be found such three same type exist. show how concepts relate simplest possible x(x 1) despite its simple form difficult problems remain.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

synthesis of platinum nanostructures in two phase system

چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...

Stability of a Stochastic Two-Dimensional Non-Hamiltonian System

We study the largest Lyapunov exponent of the response of a two dimensional non-Hamiltonian system driven by additive white noise. The specific system we consider is the third-order truncated normal form of the unfolding of a Hopf bifurcation. We show that in the small-noise limit the top Lyapunov exponent always approaches zero from below (and is thus negative for noise sufficiently small); we...

متن کامل

Classical bifurcations and entanglement in smooth Hamiltonian system

We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is...

متن کامل

Predicting Two Dimensional Hamiltonian Chaos*

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

Localized excitations in two-dimensional Hamiltonian lattices.

We analyze the origin and features of localized excitations in a discrete two-dimensional Hamiltonian lattice. The lattice obeys discrete translational symmetry, and the localized excitations exist because of the presence of nonlinearities. We connect the presence of these excitations with the existence of local integrability of the original N degree of freedom system. On the basis of this expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2021

ISSN: ['1417-3875']

DOI: https://doi.org/10.14232/ejqtde.2021.1.49